Global minimization of rational functions and the nearest GCDs

نویسندگان

  • Jiawang Nie
  • James Demmel
  • Ming Gu
چکیده

This paper discusses the global minimization of rational functions with or without constraints. The sum of squares (SOS) relaxations are proposed to find the global minimum and minimizers. Some special features of the SOS relaxations are studied. As an application, we show how to find the nearest common divisors of polynomials via global minimization of rational functions. keywords: Rational function, polynomial, global minimization, sum of squares (SOS), greatest common divisor, quadratic module.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GCD and Factorisation of multivariate polynomials

Some widely known techniques can be used to factorise univariate polynomials over the domain of integers. However, finding algorithms which factorise univariate and multivariate polynomials over Z and other domains is a little trickier. Several factorisation algorithms first need GCDs of the polynomials. Computing GCDs of polynomials is also necessary for adding rational functions. Both problem...

متن کامل

ISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES CONSIDERING WEIGHT MINIMIZATION AND LOCAL STRESS CONSTRAINTS

The Isogeometric Analysis (IA) is utilized for structural topology optimization  considering minimization of weight and local stress constraints. For this purpose, material density of the structure  is  assumed  as  a  continuous  function  throughout  the  design  domain  and approximated using the Non-Uniform Rational B-Spline (NURBS) basis functions. Control points of the density surface are...

متن کامل

Approximation of rank function and its application to the nearest low-rank correlation matrix

The rank function rank(·) is neither continuous nor convex which brings much difficulty to the solution of rank minimization problems. In this paper, we provide a unified framework to construct the approximation functions of rank(·), and study their favorable properties. Particularly, with two families of approximation functions, we propose a convex relaxation method for the rank minimization p...

متن کامل

Computing GCDs of polynomials modulo triangular sets

We present a modular algorithm for computing GCDs of univariate polynomials with coefficients modulo a zero-dimensional triangular set. Our algorithm generalizes previous work for computing GCDs over algebraic number fields. The main difficulty is when a zero divisor is encountered modulo a prime number. We give two ways of handling this: Hensel lifting, and fault tolerant rational reconstructi...

متن کامل

Global Optimization of Rational Multivariate Functions

The paper deals with unconstrained global minimization of rational functions. A necessary condition is given for the function to have a nite innmum. In case the condition is satissed, the problem is shown to be equivalent to a speciic constrained polynomial optimization problem. In this paper, we solve a relaxation of the latter formulation using semi-deenite programming. In general, the relaxa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2008